Analisis data kategorik untuk peubah ganda (Multivariate) diawali dengan tabel kontingensi. Perhitungan persentase kolom, baris, atau persentase total akan mempermudah interpretasi hasil analisis.
Persentase kategorik menunujukkan kecenderungan masing-masing kategori dalam satu peubah/variabel. Semakin tinggi persentase suatu kategori maka semakin tinggi pula kecenderungan kategori tersebut sebagai ciri peubah yang bersangkutan. Dalam peubah ganda, persentasi sel-sel dalam tabel kontingensi dapat secara langsung menunjukkan asosiasi peubah-peubah yang menyusun tabel tersebut.
Peubah-peubah dalam suatu tabel kontingensi dikatakan tidak berasosiasi atau saling bebas jika sebaran persentasenya sama atau mendekati sama di masing-masing kolom (pada persentase kolom). Sebaliknya jika sebaran persentase tidak sama maka peubah-peubah berasosiasi dengan tingkat asosiasi tertentu (Agung, 2001).
Anda tertarik dengan Statistika?
Blog Winner Statisik adalah Blog mengenai informasi seputar statistika.
Mari kita berbagi informasi mengenai statistika...
Apabila Anda perlu bantuan, hubungi: (021)96927448
Selasa, 05 Februari 2008
Analisis Tabel Kontingensi (Crosstab)
Langganan:
Posting Komentar (Atom)
Anda Perlu Bantuan Analisis Data Statistik?
Hubungi kami melalui:
- Telp. (021)96927448
- email. jihadbest36@yahoo.com
Analisis Data:
- Skripsi (S1): Rp 500.000
- Tesis (S2): Rp 1.000.000
- Disertasi (S3): Rp 2.500.000
Kursus Private Statistika
2 jam per pertemuan:
- S1: Rp 150.000 per pertemuan
- S2: Rp 300.000 per pertemuan
- S3: Rp 500.000 per pertemuan
Konsultasi Rp 100.000 per jam
ANALISIS YANG KAMI LAYANI
1. Analisis Deskriptif
Meringkas Data, statistika 5 serangkai, Ukuran pemusatan,
ukuran keragaman data, dll
2. Charting, grafik
Pembuatan chart dan grafik apapun sesuai keinginan Anda
3. Tabulasi
Pembuatan berbagai macam tabel sesuai keinginan Anda
4. Uji Signifikan
Melakukan uji hipotesis terhadap berbagai permasalahan
Uji satu sampel, uji dua sempel, uji dua atau lebih sampel
5. Korelasi
Metode untuk mengetahui hubungan antar dua variabel,
satu variabel dengan lebih dari satu veriabel, dan juga
banyak variabel dengan banyak variabel.
6. Regresi
Metode untuk membuat suatu modelhubungan antara
satu variabel terikat (dependent variable) dengan satu atau lebih variabel bebas (independent variable)
7. Multivariate Regression
Metode untuk membuat model hubungan antara banyak
variabel terikat (dependent variable) dan banyak variabel bebas
(independent variable)
8. Logit-Probit
Mirip dengan regresi namun dapat digunakan untuk variabel kategorik
(ordinal dan nominal), termasuk non parametrik
9. Experimental Design
10. Non-Parametrik Analysis
11. AKU (Analisis Komponen Utama) /Principal Component
12. Analisis Faktor
16. Biplot
17. Analisis Korespondency
18. Time Series Anlysis
19. Path Analysis
20. SEM (Seqential Equation Modeling)
21. CHAID
22. AMMI
23. Bootstrap
Meringkas Data, statistika 5 serangkai, Ukuran pemusatan,
ukuran keragaman data, dll
2. Charting, grafik
Pembuatan chart dan grafik apapun sesuai keinginan Anda
3. Tabulasi
Pembuatan berbagai macam tabel sesuai keinginan Anda
4. Uji Signifikan
Melakukan uji hipotesis terhadap berbagai permasalahan
Uji satu sampel, uji dua sempel, uji dua atau lebih sampel
5. Korelasi
Metode untuk mengetahui hubungan antar dua variabel,
satu variabel dengan lebih dari satu veriabel, dan juga
banyak variabel dengan banyak variabel.
6. Regresi
Metode untuk membuat suatu modelhubungan antara
satu variabel terikat (dependent variable) dengan satu atau lebih variabel bebas (independent variable)
7. Multivariate Regression
Metode untuk membuat model hubungan antara banyak
variabel terikat (dependent variable) dan banyak variabel bebas
(independent variable)
8. Logit-Probit
Mirip dengan regresi namun dapat digunakan untuk variabel kategorik
(ordinal dan nominal), termasuk non parametrik
9. Experimental Design
10. Non-Parametrik Analysis
11. AKU (Analisis Komponen Utama) /Principal Component
12. Analisis Faktor
13. Cluster Analysis
14. Analisis Diskriminan
16. Biplot
17. Analisis Korespondency
18. Time Series Anlysis
19. Path Analysis
20. SEM (Seqential Equation Modeling)
21. CHAID
22. AMMI
23. Bootstrap
Pada penentuan validitas item ada yang menggunakan kriteria dengan menggunakan tabel r (product moment) dimana semakin banyak jumlah sampel maka kriteria kevaliditasannya akan semakin rendah.
BalasHapusTrus kalau ada anak SD membuat yang baru bisa membaca membuat item asal-asalan, namun diujikan pada sampel yang sangat banyak, bisa jadi itemnya akan valid semua.
Padahal teman saya yang S3 sampai tiga kali gagal(item gugur) ketika membuat item untuk skala pengukurannya.
Gimana menurut pendapat anda?
setya
psycomnet09@mail.com
@anonim: Ada kemungkinan seperti itu, namun peluang terjadinya sangat kecil. Apabila datanya banyak, kemungkinan variasinya besar, tapi tidak berpengaruh secara signifikan terhadap kevalidan, karena validitas dengan mengkorelasikan antara item dengan total sehingga yang dibandingkan adalah karakteristik antara item pertanyaan dengan totalnya pada masing-masing responden (responden yang sama)
BalasHapustabel kontingensi itu fungsinya untuk apa dan menunjukkan ap??
BalasHapuskalau saya punya tabel seperti ini mksdnya apa?
--------------------------------------
Sampel | Kadar elektrolit
Pasien sebelum HD | A
Pasien setelah HD | B
Total | A+B
--------------------------------------
kalo data ada yang missing (tdk valid 100%)penyebabnya kenapa ya?? dan apakah bisa tetap dipakai?
BalasHapuskalo untuk mengukur surplus tahun lalu dengan surplus tahun berikutnya, apa bisa menggunakan crosstab???
BalasHapus